Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Total Environ ; 812: 152597, 2022 Mar 15.
Article in English | MEDLINE | ID: covidwho-1629768

ABSTRACT

Compared to the growing body of literature on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection and quantification in sewage, there are limited studies reporting on correlations between the viral loads in sewage and the prevalence of infected patients. The present work is a part of the regular monitoring effort for SARS-CoV-2 in wastewater influents from seven wastewater treatment plants (WWTPs) in Tehran, Iran, starting from late September 2020 until early April 2021. These facilities cover ~64% of the metropolis serving >5000,000 M individuals. The study set out to track the trends in the prevalence of COVID-19 in the community using wastewater based epidemiology (WBE) and to investigate whether these measurements correlate with officially reported infections in the population. Composite sewage samples collected over 16 h were enriched by polyethylene glycol precipitation and the corresponding threshold cycle (Ct) profiles for CDC 'N' and 'ORF1ab' assays were derived through real time RT-qPCR. Monte Carlo simulation model was employed to provide estimates of the disease prevalence in the study area. RNA from SARS-CoV-2 was detectable in 100% ('N' assay) and 81% ('ORF1ab' assay) of totally 91 sewage samples, with viral loads ranging from 40 to 45,000 gene copies/L. The outbreak of COVID-19 positively correlated (R2 = 0.80) with the measured viral load in sewage samples. Furthermore, sewage SARS-CoV-2 RNA loads preceded infections in the population by 1 to 2 days, which were in line with public adherence with and support for government instructions to contain the pandemic. Given the transient presence of human host-restricted infections such as SARS-CoV-2, these results provide evidence for assessment of the effectiveness of coordinated efforts that specifically address public health responses based on wastewater-based disease surveillance against not only COVID-19 but also for future infectious outbreaks.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Iran/epidemiology , Prevalence , RNA, Viral , Sewage , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL